Review of Evidence for Effectiveness of POU Water Treatment

Mark D. Sobsey, PhD
Department of Environmental Sciences and Engineering
Gillings Schools of Global Public Health
University of North Carolina
Chapel Hill, NC

Adapted from a presentation prepared by:
Thomas Clasen, JD, PhD
Department of Disease Control
Faculty of Infectious & Tropical Diseases
London School of Hygiene & Tropical Medicine
Sobsey@email.unc.edu
Leading Causes of Deaths from Infectious Diseases

- Lower Respiratory Infections: 3.9 million deaths (Over age 5)
- HIV/AIDS: 2.8 million deaths (Under age 5)
- Diarrhoeal Diseases: 1.8 million deaths (Over age 5)
- Tuberculosis: 1.6 million deaths
- Malaria: 1.3 million deaths
- Measles: 0.6 million deaths

Source: WHO 2004

Diarrhea may be 88% preventable by water, sanitation and hygiene.
HWTS Interventions to Improve WQ & Reduce WB Disease
What about boiling?

- Sub-optimal microbiological performance, probably due to recontamination after boiling

| Distribution of samples by TTC count (log scale) in longitudinal field studies (n=50 HH in Vietnam and Guatemala, 212 HH in India) |
|---|---|---|---|---|
| Vietnam (Clasen 2008) | 71.2 | 10.7 | 13.2 | 4.9 |
| India (Clasen 2009) | 37.0 | 38.3 | 22.2 | 2.5 |
| Guatemala (Rosa 2010) | 59.6 | 5.7 | 9.5 | 25.1 |
| Zambia (Psutka 2010) | 39.3 | 22.9 | 17.7 | 20.0 |

- Potentially high cost: US$7.99 to US$8.34 per HH per year in India; US$3.24 (collect fuel) to US$20.16 (purchase) in Vietnam
- Indoor air pollution from cooking with biomass associated with reduced birth weight, respiratory infections, anemia, stunting (Retherford 2006)
- Boiling water at home is also associated with higher levels of burn accidents (Rossi 1998).
- Other issues: Acceptability, environmental sustainability
The Need for a POU Technological Breakthrough

• Current “popular” technologies have deficiencies of various kinds

• Most are single-barrier and unable to efficiently reduce all pathogens and create aesthetically “attractive “water

• Better technologies are available in largely expensive, high-end products from specific manufacturers

• Question:

• What are the necessary and desirable properties of an optimum HWT technology?
Challenge #1: Assessing Efficacy/Effectiveness

- What are the best criteria for this?
 - Microbial
 - Heath impact

- Programmatic
- Economic

Microbial reduction performance levels achieved by HWTs
Assessing Efficacy/Effectiveness: Microbial

- What are the most appropriate metrics for microbial reduction evidence?
- EPA and NSF “6-4-3” \log_{10} reductions?
- New WHO guidance for health risk-based microbial reduction evidence linked to DALYs (disability adjusted life years)
 - 3 levels of performance (3 bars)
 - Highest: meets 10^{-6} DALY/person/yr WHO target
 - Mid: meets 10^{-4} DALY/person/yr
 - Minimum: $\geq 1 \log_{10}$ reduction of each microbe class

<table>
<thead>
<tr>
<th>Rating</th>
<th>\log_{10} reduction required: bacteria</th>
<th>\log_{10} reduction required: viruses</th>
<th>\log_{10} reduction required: protozoa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly protective</td>
<td>≥ 4</td>
<td>≥ 5</td>
<td>≥ 4</td>
</tr>
<tr>
<td>Protective</td>
<td>≥ 2</td>
<td>≥ 3</td>
<td>≥ 2</td>
</tr>
<tr>
<td>Minimally protective</td>
<td>≥ 1</td>
<td>≥ 1</td>
<td>≥ 1</td>
</tr>
</tbody>
</table>
Assessing Efficacy/Effectiveness: Health Impacts

• How reliable and robust is the health evidence from RCTs, other epidemiological studies and meta analyses?
• Diarrhea as a health outcome
 – Less reliable than mortality, child growth measures, other health outcome measures
• Lack of blinding and no placebos
• Courtesy and or participant fatigue bias
• Short study duration and declining health impact over time
Systematic Review Evidence: Clasen et al. (2006)

<table>
<thead>
<tr>
<th>Intervention Type</th>
<th>Estimate (random)</th>
<th>% Δ (1-RR)</th>
<th>95% CI of Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source (6)</td>
<td>0.73</td>
<td>27%</td>
<td>0.53 to 1.01</td>
</tr>
<tr>
<td>Household (32)</td>
<td>0.53</td>
<td>47%</td>
<td>0.39 to 0.73</td>
</tr>
<tr>
<td>Filtration (6)</td>
<td>0.37</td>
<td>63%</td>
<td>0.28 to 0.49</td>
</tr>
<tr>
<td>Chlorination (16)</td>
<td>0.63</td>
<td>37%</td>
<td>0.52 to 0.75</td>
</tr>
<tr>
<td>Solar Disinfection (2)</td>
<td>0.69</td>
<td>31%</td>
<td>0.63 to 0.74</td>
</tr>
<tr>
<td>Flocc/Disinfection (7)</td>
<td>0.48</td>
<td>52%</td>
<td>0.20 to 1.16</td>
</tr>
<tr>
<td>Flocc/Disinfection (ex Doocy)</td>
<td>0.69</td>
<td>31%</td>
<td>0.58 to 0.82</td>
</tr>
<tr>
<td>Impr. Storage (1)</td>
<td>0.79</td>
<td>21%</td>
<td>0.61 to 1.03</td>
</tr>
</tbody>
</table>

Challenge #1: Assessing Efficacy/Effectiveness

• How reliable, robust and representative is the *microbial reduction* evidence from lab performance evaluation and field studies?

• How reliable and robust is the *health impact* evidence from RCTs, other epidemiological studies and meta analyses?

• Diarrhea as a health outcome
 – Less reliable than mortality, child growth measures, other health outcome measures

• Lack of blinding and no placebos

• Short study duration and declining health impact effects and usage over time
Challenge #2: Correct, consistent use

• What are the appropriate criteria?
• How to measured in the field?
• Evidence of use decline over time for some HWTs
 – Coagulant-flocculent-disinfectant
 – Chlorine
 – SODIS
• Some filters are less prone to such use decline
 – Biosand filters: nearly 90% continued use
 – Ceramic pot filters: usually >75% use over time
 • Most disuse is from breakage and lack of replacements (supply chain deficiencies)
Compliance

• In a systematic review of all HWT intervention trials, the pooled RR was 0.46 (95% CI: 0.25-0.84) among 16 trials reporting compliance >50%, and 0.75 (0.63-0.90) among 5 trials reporting compliance <50% (Clasen 2006).

• Among intervention studies using chlorine, effectiveness against DD was enhanced among studies with a larger fraction of water samples with detectable free chlorine (Arnold 2007).

• Recent program assessment studies show very low compliance and health impact (diarrhea)

• Guatemala: chlorination and SODIS (Arnold et al.)

• Bolivia: SODIS (Mausezahl et al.)
Challenge #3: Effective and Appropriate HWTS

• Which HWTS technologies are most effective and appropriate?
• Which HWTS implementation systems are most effective and appropriate?
• Under what conditions?
• What are the criteria for these?
 – Especially to achieve high coverage and scale?
Challenge #4: Targeting the vulnerable population

- Who is most vulnerable? (children <5 years?)
- Which countries/regions are most vulnerable?
- Which countries and regions are making the most progress in scaling up HWTS?
- What are the best approaches to reach the most vulnerable where there is willingness and capacity to go to greater coverage and scale?
- What can be done to reach the vulnerables where the willingness and capacity are low?
In an evaluation of JMP household survey data from 67 low and medium-income countries, 33% of households (36.6% urban vs. 30.1%) report treating their water at home before drinking it. This is equivalent to 1.1 billion people.

Reported microbially adequate HWT-use increases with wealth

Challenge #5

Achieving long-term and sustainable uptake
Are HWTS Systems Sustainable?

• Is there continued use and effective performance over time?

• What are the appropriate criteria?
 – How can we best find out?

HWT Performance Scores Based Effectiveness Criteria

<table>
<thead>
<tr>
<th>Treatment Technology</th>
<th>Water Quantity</th>
<th>Water Treatability</th>
<th>Ease of Use</th>
<th>Cost</th>
<th>Supply Chain?</th>
<th>Sustained Use</th>
<th>Overall Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free chlorine</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3, liquid 2, tablets</td>
<td>1</td>
<td>1.5</td>
<td>12.5 11.5</td>
</tr>
<tr>
<td>Coagulation/disinfection</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>SODIS</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Ceramic Filtration</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2.5</td>
<td>14.5</td>
</tr>
<tr>
<td>Biosand filtration</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>16</td>
</tr>
</tbody>
</table>

Filtration technologies score highest based on effectiveness criteria.

Score system: 3 = high, 2 = middle, 1 = low
Sustainability

Effect of POU chlorine Rx on child diarrhea by length of intervention. (Circle area reflects study weight in the random effects meta-analysis.)

Driving HWT Policy with Evidence of Impact*

• Input-based strategy for water (e.g., “improved water supplies”) has led to sub-optimal solutions in terms of performance, health impact and sustainability

• Clasen says: Do not aggravate this problem by counting HWT toward the MDG water target (“sustainable access to safe drinking water’)
 – HWT does not improve quantity and access, key antecedents to development (and health)
 – Current evidence does not demonstrate that HWT can consistently deliver “safe water” (Q: do you agree?)
 • Although safer than some conventional supplies that currently do count

• Questions: Do you agree? What if “safe” was scored?

Driving HWT Policy with Evidence of Impact

- Clasen says: HWT policy should be assessed on impact (long-term outcomes), esp. on its contribution to health (child survival)
 - *Health-based strategy* will require promoters to address key challenges (efficacy, compliance, performance, target population, sustainable uptake)
 - *Investment* (government, funders, householders) will be commensurate with demonstrable returns (Q: what kind?)
 - Position HWT policy in health (rather than water) ministry to develop clear policies that do not divert resources from optimal water solutions (household connections)
- “What gets measured, gets done.” Peter Drucker