Best Practice Recommendations for Local Manufacturing of Ceramic Pot Filters for Household Water Treatment

Justine Rayner
Daniele Lantagne, PE
The Ceramics Manufacturing Working Group
Outline

• Introduction
• Filter Efficacy
• Overview of Filter Production & Current Practices
• Summary of Manufacturing Recommendations & Guidelines
• Areas for Further Research
• Conclusions
Introduction

• International Ceramic Pot Workshop
 – Disinfection 2009, February
 – Independent workshop organized by Delft University
 – 74 attendees

• Ceramic Manufacturing Working Group
 – Series of conference calls
 – Survey filter factories
 – Best practice recommendations
Ceramics Manufacturing Working Group

Goal:

Provide guidance to assist filter factories in producing the most effective ceramic filters possible at the lowest cost.

Objectives:

- Summarize existing knowledge
- Identify lessons learned
- Make production recommendations
- Identify future research
Filter Efficacy

• Effective at removing:
 – > 99% of protozoa
 – 90-99% of bacteria

• Associated with reduction in diarrheal disease

• High user acceptability & potential for long-term use
Survey

35 Factories in 18 countries identified (July 2009)
18 Factories participated in the survey
- considers 8 Myanmar factories as 1 (25 total)
Filter Production

• Prepare Raw Materials
 – Water, Clay, Burn-out Material, Additional Materials (Grog, Sand, Laterite)
• Prepare Filter Mixture (pre-established ratio)
• Press Filter Shape
• Drying & Surface Finishing
• Stack and Fire Kiln
• Quality Control Inspections and Testing
• Apply Silver
• Package for Sale
Production Consistency

• Prototype filters
 – filter mixture ratio
 – specific flow rate
 – microbiological testing

• Flow rate
 – indicator of filter quality
 – production consistency

With consistent materials and production, filters that pass flow rate testing should be representative of prototype filters.
Flow Rate is also affected by:

- Clay characteristics
- Burn-out material
 - type
 - particle size
- Mixture ratio
 - including water & additional materials
- Firing conditions
 - location in kiln & heat distribution
 - firing profile & peak temperature
 - atmosphere
Clay

“Poor quality clay can result in a failure rate of over 20%”

Most factories get clay from the same source, 17% (3 of 18) do not.

- source
- location in the mine

Clay evaluation: consistency & characteristics

- shrinkage
- porosity
- maturation range
Burn-out Material

“Sawdust from different woods have different effects on filters: some pass on color and odor to the filters”

• Sawdust
 – The type of wood varies at 45% of the factories that use sawdust (5 of the 11)

• Rice husks
 – inner rice husks (bran)
 – outer rice husks

Monitoring & evaluation of burn-out material
 – consistent source
 – consistent processing
 – humidity
80% (13 of 16) of factories adjust their formula regularly or as needed depending on:

- where in the mine the clay comes from
- clay source
- burn-out characteristics
- based on experience
- the climate and the humidity of materials
- to achieve the desired flow rate
- other quality control issue

When the filter mixture ratio is changed, efficacy should be confirmed with microbiological testing
Firing

“Success depends on the person firing the kiln”

To monitor firings, factories use
- a pyrometer (50%)
- pyrometric cones (28%)
- both (22%)
- only one factory uses the 3 cone method

Monitoring and controlling firings:
- temperature range of clay
 - strength & porosity
- firing profile
- even heat distribution in the kiln
 - kiln characteristics
 - firing technique
- complete combustion of burn-out material
Production Logs

“We have introduced SPC and check all process parameters including: filter weight, drying time, kiln temperature, visual faults and filtration rates”

72% (13 of 18) always maintain production logs, the information recorded varies.

Production logs can aid in:

– calling attention to process details
– repeatability of process
– troubleshooting
– research
Failure Rates

Number one reason for filter rejection at 60% (9 of 15) of the factories: Flow rate

Standardization of quality control tests

- visual & auditory inspections
- pressure & flow rate tests
Factory Established Flow Rates

Flow rate testing guidelines
- 100% of filters
- Saturation time
- Determining flow rate

Filter Flow Rates

<table>
<thead>
<tr>
<th>Factory</th>
<th>Filter Capacity (L)</th>
<th>Filter Depth (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benin</td>
<td>L 8</td>
<td>cm 24</td>
</tr>
<tr>
<td>Cam-1</td>
<td>10</td>
<td>xx 24</td>
</tr>
<tr>
<td>Cam-2</td>
<td>11</td>
<td>xx 28</td>
</tr>
<tr>
<td>Colombia</td>
<td>xx 28</td>
<td>xx 24</td>
</tr>
<tr>
<td>DR</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>Guate-1</td>
<td>7.1</td>
<td>28</td>
</tr>
<tr>
<td>Guate-2</td>
<td>11</td>
<td>23</td>
</tr>
<tr>
<td>Indo-1</td>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>Indo-2</td>
<td>8</td>
<td>xx</td>
</tr>
<tr>
<td>MM-All</td>
<td>10</td>
<td>23.5</td>
</tr>
<tr>
<td>Nica-1</td>
<td>8</td>
<td>22.5</td>
</tr>
<tr>
<td>Nica-2</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>Nigeria</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>SL-1</td>
<td>8</td>
<td>23</td>
</tr>
<tr>
<td>SL-2</td>
<td>8</td>
<td>29</td>
</tr>
<tr>
<td>Tanz-1</td>
<td>7</td>
<td>xx</td>
</tr>
<tr>
<td>Tanz-2</td>
<td>7.1</td>
<td>xx</td>
</tr>
<tr>
<td>Yemen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Disinfection 2011
Microbiological Testing

• 72% (13 of 18) report carrying out microbiological testing regularly
 – 61% test between 0.2%-15% of filters at a laboratory, at the factory or both

Testing Guidelines
 – indicator selection
 – in-house testing methods
 – frequency of testing & percentage of filters
Summary of Recommendations

• Raw materials evaluations & consistent materials processing
• Consistent filter production
 – mixture preparation, pressing, drying
• Consistent firing
 – monitoring & controlling firing temperature & firing curve
• Quality control
 – visual & auditory inspections and pressure & flow rate tests
• Silver dilution and application
 – 64mg of colloidal silver applied by brushing, to each filter
• Microbiological testing
 – 0.1% of filters at a laboratory & 1% at the factory (minimum)
• Information to document & sample logs
 – materials characteristics, manufacturing processes, firing, results of inspections and tests
• Key points to include in the O & M instructions
• Health and Safety recommendations
Main Areas for Further Research

• Materials characteristics
 – clay, burn-out characteristics (type, size, residue) on flow rate, porosity & microbiological efficacy

• Variables that affect filter strength
 – filter shape, pressure, firing profile, processing, ratio & materials characteristics

• Firing temperature & profile
 – strength, porosity, black core

• Silver
 – optimum concentration & quantity, how long it lasts, what influences disassociation, effects of chlorine

• Filter lifespan and influences

• Strength of the relationship between porosity, flow rate & microbiological efficacy: additional low-cost tests
Conclusions

• Designed to be able to accommodate some variation in production
 – Consistent materials characteristics & processing
 – Consistent production processes
 – Standardized quality control testing
 – Documentation of production processes

• Voluntary Implementation of Recommendations
 – theory explained
 – adaptation based on local circumstances

• We hope to receive feedback!
Dedicated to Ron Rivera and Mickey Sampson

Thank you!