The Impact of Sodium Dichloroisocyanurate Treatment on Household Drinking Water Quality and Health in Peri-urban Ghana: a Randomized, Double-blind, Placebo-controlled Trial

Osman K. Sahanoon, Seema Jain, Elizabeth Blanton, Ann Schmitz, Thomas Sayibu Imoro, Michael Hoekstra, and Robert E. Quick
Global Burden of Unsafe Water

- Diarrhea causes 1.8 million deaths per year
- Over 1 billion people lack access to safe water
- Fecally contaminated drinking water is a major contributor to diarrheal diseases
Safe Water System

Water disinfection with dilute sodium hypochlorite (bleach)

Safe water storage

Social marketing and community mobilization

NewEnergy
Safe Water System Results

• Reduces diarrheal disease risk 25-85% in randomized, controlled, published studies

• Liquid sodium hypochlorite
 – Produced locally
 – Shelf life of 1 year

• Successfully implemented in many countries
Sodium Dichloroisocyanurate (Chlorine Tablets)

- Alternative to sodium hypochlorite
 - Effective microbicide
 - Emergency use for years

- Potential advantages over liquid chlorine
 - Tablets are easy to ship
 - Shelf life of 5 years

- Field trials show acceptability and microbiological effectiveness
 - Lack of published health impact studies
Objectives

• Assess the acceptability of chlorine tablets

• Determine impact of chlorine tablets
 – Stored water quality
 – Diarrhea incidence
Tamale, Ghana

- Northern Ghana
 - Peri-urban population

- History of seasonal cholera outbreaks in the rainy season

- Compounds with multiple families
 - With at least one child <5 years old
Typical Compound
Study Design

- Randomized, double-blinded, placebo-controlled trial
- Baseline survey: Aug 2006
 - Census and demographics
 - Water, sanitation, and hygiene practices
- Twice weekly visits over 12 weeks during rainy season: Aug-Nov 2006
 - Asked about diarrhea and tested for free chlorine residuals
- Microbiological water quality testing
 - Random sample of 20% of compound drinking water samples for *E. coli* at baseline, midpoint, and end
 - Source water testing at the end
Study Intervention

- Compounds randomized into intervention and control groups
- All received standard 20L plastic vessel with metal spigot
Study Intervention

- Intervention group received chlorine tablets

- Control group received placebo tablets in identical packaging

- Neither study participants or investigators knew which tablets were chlorine vs. placebo
Instructions for Use

• Provided verbal and pictorial instructions

• Instructed compounds
 – Use vessel provided
 – Add one tablet to water
 – Wait 30 minutes before drinking

• No further information on water treatment or handling, sanitation, and hygiene was provided
Microbiological Water Quality Testing

• Compound water samples collected and transported to lab within 6 hours
 – Incubated at 35°C for 18-24 hr

• Tested undiluted, 1:10, 1:100 dilutions using Colilert®

• Estimated the most probable number of \(E. \, coli \) colonies per 100ml
Baseline Compound and Individual Characteristics

• Enrolled 240 compounds
 – 3240 individuals (median 12 persons; range 2-42)

• Median age of individuals was 18 years
 (range 1 month-95 years)

• 550 (17%) were children < 5 years of age

• 51% were female

• The two groups did not differ
Baseline Water Handling and Sanitation Practices* (N=240)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Percent (n=240)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water source</td>
<td></td>
</tr>
<tr>
<td>Water tap</td>
<td>95%</td>
</tr>
<tr>
<td>Water storage</td>
<td></td>
</tr>
<tr>
<td>Clay pot</td>
<td>72%</td>
</tr>
<tr>
<td>Water treatment</td>
<td></td>
</tr>
<tr>
<td>Sieving thru cloth</td>
<td>29%</td>
</tr>
<tr>
<td>Using alum</td>
<td>23%</td>
</tr>
<tr>
<td>Sanitation</td>
<td></td>
</tr>
<tr>
<td>Public latrines</td>
<td>84%</td>
</tr>
<tr>
<td>Open ground</td>
<td>42%</td>
</tr>
</tbody>
</table>

* More than one answer was possible
Percentage of Intervention and Control Compounds with ≥ 0.2 g/ml of Free Chlorine by Surveillance Visit (N=240)
Source Water

- 99% of compounds used tap water throughout the study period
- Microbiological water quality testing on source water showed no contamination
Percent of Water Samples with E. coli and Median E. coli Colony Counts in Control and Intervention Compounds (N=240)

<table>
<thead>
<tr>
<th>Sampling round</th>
<th>Intervention Compounds</th>
<th>Control Compounds</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% Samples with E. coli colonies</td>
<td>Median E. coli count per 100ml (range)</td>
<td>% Samples with E. coli colonies</td>
</tr>
<tr>
<td>Baseline</td>
<td>96%</td>
<td>93 (0-36,582)</td>
<td>88%</td>
</tr>
<tr>
<td>Midterm</td>
<td>21%</td>
<td>0 (0-1885)</td>
<td>92%</td>
</tr>
<tr>
<td>Final</td>
<td>8%</td>
<td>0 (0-292)</td>
<td>54%</td>
</tr>
</tbody>
</table>

* Wilcoxon 2-sample Test
Percent of Water Samples with *E. coli* and Median *E. coli* Colony Counts in Control and Intervention Compounds (N=240)

<table>
<thead>
<tr>
<th>Sampling round</th>
<th>Intervention Compounds</th>
<th>Control Compounds</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% Samples with E. coli colonies</td>
<td>Median E. coli count per 100ml (range)</td>
<td>% Samples with E. coli colonies</td>
</tr>
<tr>
<td>Baseline</td>
<td>96%</td>
<td>93 (0-36,582)</td>
<td>88%</td>
</tr>
<tr>
<td>Midterm</td>
<td>21%</td>
<td>0 (0-1885)</td>
<td>92%</td>
</tr>
<tr>
<td>Final</td>
<td>8%</td>
<td>0 (0-292)</td>
<td>54%</td>
</tr>
</tbody>
</table>

Wilcoxon 2-sample Test
Percent of Water Samples with *E. coli* and Median *E. coli* Colony Counts in Control and Intervention Compounds (N=240)

<table>
<thead>
<tr>
<th>Sampling round</th>
<th>Intervention Compounds</th>
<th>Control Compounds</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% Samples with E. coli colonies</td>
<td>Median E. coli count per 100ml (range)</td>
<td>% Samples with E. coli colonies</td>
</tr>
<tr>
<td>Baseline</td>
<td>96%</td>
<td>93 (0-36,582)</td>
<td>88%</td>
</tr>
<tr>
<td>Midterm</td>
<td>21%</td>
<td>0 (0-1885)</td>
<td>92%</td>
</tr>
<tr>
<td>Final</td>
<td>8%</td>
<td>0 (0-292)</td>
<td>54%</td>
</tr>
</tbody>
</table>

* Wilcoxon 2-sample Test
Crude Diarrhea Incidence in Control and Intervention Compounds

- Diarrhea incidence = \(\frac{\text{Diarrheal episodes}}{\text{Total observations}} \times 100 \)

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Total observations</th>
<th>Diarrheal episodes (%)</th>
<th>Control</th>
<th>Total observations</th>
<th>Diarrheal episodes (%)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40,751</td>
<td>441 (1.1)</td>
<td></td>
<td>40,252</td>
<td>490 (1.2)</td>
<td>0.71</td>
</tr>
</tbody>
</table>
Diarrheal Incidence Rates for Intervention and Control Groups by Visit Number (N=3,240)
Diarrheal Incidence Rates for Intervention and Control Groups by Visit Number (N=3,240)
Summary

• Adherence during the study period was high

• Use of chlorine tablets was associated with a significant decrease in *E. coli*

• Use of chlorine tablets not associated with a health impact

• Diarrhea rates were much lower than expected
Limitations

• Exclusive use of improved water sources specifically tap water due to heavy rains
 – No detectable contamination
 – Periodic chlorination

• All compounds given safe storage vessels
 – May have served as a water quality intervention in both groups

• Twice weekly visits may have improved hygiene practices in both groups
Conclusions

• Chlorine tablets are a promising method of household water treatment
 – Adherence high
 – Microbicidal effect

• Lack of demonstrated health impact

• Further study of health impact is warranted
Acknowledgements

Ghana
• Bilpiela community and participating compounds
• NewEnergy
 – Osman K. Sahanoon
 – Ayuba Abukari
 – Jennifer Apiung
 – Issah Baba
 – Chief M.S. Caesar
 – Luqman Mahama
 – Issahaku Mohammed
 – Alhassan Tahiru Seini
 – Imoro Z. Tuu-naa
 – Musin Salifu
 – Musah Abdul-wahab
 – Sayibu Imoro Wunpini
 – Bukari Mohammed Yakubu
 – Ibrahim Mohammed Ali
 – Abdallah Mashud
• University of Development Studies
 – Rowland Otchwemah
• Ghana Water Company
 – Emmanuel Agyemang Ansaaku
 – Benjamin K. Moses

United States
• USAID/WAWI
 – Rochele Rainey
• CDC
 – Elizabeth Blanton
 – Seema Jain
 – Rob Quick
 – Ann Schmitz
 – Michael Hoekstra
 – Kathleen Wannemuehler
 – Daniele Lantagne
• Emory Center for Global Safe Water
 – James M. Hughes
• Funding provided by CDC, Medentech Ltd, and the Chlorine Chemistry Council

The findings and conclusions in this presentation have not been formally disseminated by the Centers for Disease Control and Prevention and should not be construed to represent any agency determination or policy.